Ask HiltiAskLearnArticles
Ask Hilti

Firestop Overview

Posted by Axelabout 6 years ago

The basics you need to know

base of firestop,what do I need to know

6.1K

Fire protection is a critical consideration for architects, engineers and contractors responsible for creating the design, specification and construction of new buildings. It must also be considered in the ongoing maintenance of occupied spaces.

The elements that combine to ignite a fire are largely outside of the architect and engineers’ control; however, steps can be taken to control the spread of fire once it has started. Effective fire control within a building is generally achieved through a combination of active and passive fire protection systems.

Active fire protection systems are designed to react to the presence of fire by suppressing it with sprinkler systems, fire extinguishers or other proactive mechanical systems.

Passive fire protection systems are integrated into the structure of a building, restricting the spread of smoke and fire to a compartment that is comprised of fire-rated walls, floors and ceilings. To the extent possible, all penetrations through these firerated walls, floors and ceilings should be firestopped in accordance to a tested and approved system. Additionally, all bottom-of-wall, top-of-wall, and wall-to-wall joints in this fire-rated compartment should be firestopped in accordance to a tested and approved system. 

Firestop systems are designed to contain fire and minimize the amount of smoke passing through joints and penetrations to allow occupants more time to safely exit thebuilding.


Hilti Firestopping Systems

Hilti team members take great pride in the fact that our red toolbox is instantly recognized at construction sites around the world as a well-respected and quality brand. Hilti’s portfolio of firestop products, combined with a knowledgeable technical services team and innovative software offering, provides specifiers, installers and building occupants with the following key attributes: 

Outstanding Quality — Hilti’s firestop products are tested to the highest standards ensuring that only the best solutions are delivered to market bearing the Hilti name. 

Simple Installations — Hilti firestop products arrive ready to use on your jobsite. Installation instructions and quick reference videos make the installing process quick and easy. 

System Approvals — Hilti provides firestop systems that can be used both locally and nationally in compliance with corresponding codes and regional regulations. 

Comprehensive Solutions — Hilti provides firestop solutions for a wide range of joints and through penetrations where fire or smoke may try to spread.


Basic Situation
An uncontrolled fire is a danger for both people and property. In spite of numerous regulations and precautions, the outbreak of fire can never be completely prevented. Common sense and careful handling of volatile materials remain the most important protective measures against the outbreak and spread of fire.
The Mechanics of Fire
Three things must be present to start a fire:

  • There must be a heat source (flames, space heater) — note that some materials, under the right conditions, can generate their own heat and ignite spontaneously
  • There must be a fuel source (wood, paper or combustible materials)
  • There must be oxygen (air)

In a closed room a fire develops in three phases: origin, development and extinguishment
Origin: In this phase, the three factors in the triangle of fire exist in a type of reciprocal relationship (depending on the fuel present). The fire starts and the amount of flammable materials contributing to the fire expands, generating smoke along with an increase in temperature.
Development: Spontaneous combustion of flammable materials in a closed room occurs in this phase and is characterized by a socalled “flash-over”. The time frame for a flash-over depends on the location of flammable materials in the room as each base material has its own flash-over point. The rate of flame spread can vary from 3 to 15 minutes leading to increased heat generation and air movement. The temperature can rise as high as ~1800°F.
Extinguishment: As the flammable material is consumed, the temperature drops. Once all flammable material has been burned, the fire loses one of its required ingredients (fuel source) and, therefore, naturally burns out. The fire can also be stopped by removing the oxygen source or by cooling the room through extinguishing measures.
Fire Protection Terminology
Stability — A measure of the structural stability of a building component when exposed indirectly to heat from a fire or directly to flames from a fire.
Integrity (F-Rating) — A measure of the amount of time that it takes for flames to reach from the fire side of an assembly to the non-fire side of an assembly.
Insulation (T-Rating) — A through penetration firestop test standard (ASTM E814) that measures the time (T-rating) it takes for the non-fire side of the assembly to reach 325°F + the ambient temperature.
Depending on the building dimensions, location, and intended usage for the structure, the building must be designed to contain fire within compartmentalized sections of the building for established periods of time. These periods of time are known as the fire rating. The principles of compartmentalization are designed to limit the spread of fire and to provide evacuation paths for building occupants. Building compartmentalization also allows for emergency personnel to effectively extinguish the fire.
Time-Temperature Curve — ASTM E119 is the time-temperature curve test standard referenced for firestop testing. This test standard requires that the air temperature within the testing furnace ramp up to a specific temperature within a given amount of time and then maintain that temperature for a specified time period. This simulates the conditions of a “typical” fire in an uncontrolled environment while having the advantage of studying the fire’s behavior in the controlled environment of a testing furnace.
How Firestop Products Work
Firestop products, when installed according to a tested system, withstand the high thermal and mechanical pressures present during a fire while maintaining their functionality and integrity in different ways.
Ablative: 
When exposed to heat, the material chars and forms a carbon-like insulating layer that serves to protect the penetration opening. (Examples: CP 618 Firestop Putty Stick, CP 617 Firestop Putty Pad)
Intumescent with Pressure:
When exposed to heat, the firestop material expands producing pressure. The pressure causes the openings where the firestop is placed to be closed-off from the fire. (Examples: FS-ONE MAX Intumescent Firestop Sealant, CP 643N/644 Firestop Collars, CP 648-E/S Firestop Wrap Strip, CP 653 Speed Sleeve)
Insulating:
Insulating materials are poor conductors of heat making it difficult for heat generated from a fire to transfer and spread across the firestop material. (Examples: CP 620 Fire Foam, Mineral Wool)
Carbonized:
The firestop material chars and forms a carbon-like insulating layer that serves to protect the penetration opening. (Examples: CP 606 Flexible Firestop Sealant)
Non-Flammable Material: The firestop material reinstates the integrity of an assembly. (Examples: CP 637 Firestop Mortar) Reduced Expansion of Flames:
The firestop material contributes no fuel or energy to the fire. (Examples: CFS-S SIL GG/SL Firestop Silicone Sealant)
Range of Application
The image to the right shows several typical firestop applications. Hilti firestop products are designed, tested and approved to help protect both life and property from the damaging effects of fire, smoke and noxious gases. To restrict the uncontrolled spread of fire, walls and ceilings of a fire compartment must be able to contain the fire and prevent fire spread for a period of time. The integrity of openings and gaps in fire-rated compartments, such as those shown in the image to the right, must be restored by a tested system, or an engineering judgment if no tested system is available, to restrict heat transfer and the passage of flames, smoke and gases. Firestopping applications range from walls, floors and ceilings and consist of various forms and materials. The following applications must be considered when specifying:

  • Perimeter joints
  • Construction joints
  • Through penetrations


Test/Evaluation Methods 
Hilti has over 1,050 tested systems that provide firestopping solutions for joints and penetrations through fire-rated walls or floors. These solutions are proven to help minimize fire damage and provide life safety. The testing standard is ASTM E814 (UL 1479) for through penetrations and ASTM E1966 (UL 2079) for joints. Other standards that apply to firestopping include cUL-S115-05M (firestop testing for Canada), ASTM E 84 (flame spread/ smoke development), and ASTM E 2307 (perimeter joints). In some cases, Engineering Judgments may be required to address conditions where a tested system has not yet been approved. Engineering Judgments are official recommendations based on previously tested systems and, per IFC guidelines, must be provided by qualified technical personnel. 
Building Code 
The local and national building codes are the driving force behind firestop and its required installation in the building construction industry. These codes are written by the national organization and then adopted on the state and local levels of government. Local building officials then enforce plan design and the actual building process based upon these codes. Firestopping is addressed in the International Building Code in the sections shown in the table below.
Saving Lives Through Innovation and Education
The superior quality of Hilti firestop products helps ensure that spread of fire, smoke and toxic gases is restricted to fire-rated compartments to reduce the tragic loss of human life and destruction of property. Through a combination of innovative products, software and service offerings, Hilti is able to provide the most comprehensive firestop systems solution. 
Hilti is ready to be your partner throughout the entire firestopping process whether that be assisting with specifications, locating an independent certified firestop installer through Hilti’s Accredited Firestop Specialty Contractor (HAFSC) program, documenting firestop installations with the CFS-DM software or preparing your team and jobsite for inspection. You can count on Hilti to offer jobsite support and expertise. Our team of highly trained Fire Protection Specialists, Field Engineers and in-house Fire Protection Engineering Team are ready to help you select the correct systems and products to match your project’s specific needs.

1 comment on this article
Posted by Eemaan Khanover 1 year ago
What images are being referred to under the "Range of Applications" sub-section?